Mecanismos de resistencia a la colistina, la nitrofurantoina y la fosfomicina en Enterobacterias

Autores/as

DOI:

https://doi.org/10.51481/amc.v65i2.1272

Palabras clave:

Enterobacteriaceae resistentes a los carbapenémicos, colistina, nitrofurantoína, fosfomicina, plásmidos

Resumen

Las enterobacterias son un grupo amplio y heterogéneo de bacilos Gram negativos que se aíslan de forma rutinaria en el laboratorio clínico y se asocian a una gran cantidad de cuadros clínicos. Aquellas resistentes a antibióticos de última línea, como a los carbapenémicos, representan un gran reto en los centros de salud. Ante la dificultad para tratar infecciones causadas por este tipo de bacterias, se ha retomado el uso de antimicrobianos clásicos como la colistina, la nitrofurantoína y la fosfomicina. El objetivo de este trabajo es detallar los principales mecanismos de resistencia para estos tres fármacos descritos en enterobacterias. Para ello, se efectuó una revisión bibliográfica de artículos científicos publicados entre los años 1999 y 2022, utilizando las bases de datos PubMed (NCBI), PLOS, Redalyc, Google Scholar y Science Direct. En este proceso, se usaron las palabras clave “Carbapenem-Resistant Enterobacteriaceae”, “colistin”, nitrofurantoin”, “fosfomycin”, “resistance” y “plasmids”. Se encontró que los mecanismos de resistencia son variados y abarcan fenómenos como modificación del sitio blanco, inactivación enzimática, impermeabilidad y eflujo. Además, los determinantes genéticos de resistencia se encuentran en cromosomas o en plásmidos. Conocer este tipo de información permite mejorar la vigilancia basada en el laboratorio, combatir el problema de resistencia a los antimicrobianos y optimizar el uso de estos antibióticos que forman parte del escaso arsenal para el tratamiento de ciertas infecciones causadas por microorganismos  multidrogorresistentes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Janda JM, Abbott SL. The changing face of the family Enterobacteriaceae (Order: “Enterobacterales”): new members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin Microbiol Rev. 2021; 34:e00174-20. DOI: 10.1128/CMR.00174-20

Morales-López S, Yepes JA, Prada-Herrera JC, Torres-Jiménez A. Enterobacteria in the 21st century: a review focused on taxonomic changes. J Infect Dev Ctries. 2019; 13:265-273. DOI: 10.3855/jidc.11216

Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: a review. Infect Drug Resist. 2021; 14:4363-4374. DOI: 10.2147/IDR.S337611

Kotb S, Lyman M, Ismail G, El Fattah MA, Girgis SA, Etman A, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated infections using surveillance data, 2011-2017. Antimicrob Resist Infect Control. 2020; 9:2. DOI: 10.1186/s13756-019-0639-7

Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016; 29:583-594. DOI: 10.1097/QCO.0000000000000314

Gardiner BJ, Stewardson AJ, Abbott IJ. Nitrofurantoin and fosfomycin for resistant tract urinary infections: old drugs of emerging problems. Aust Prescr. 2019; 42:14-19. DOI: 10.18773/austprescr.2019.002

Sánchez GV, Baird AMG, Karlowsky JA, Master RN, Bordon JM. Nitrofurantoin retains antimicrobial activity against multidrug-resistant urinary Escherichia coli from US outpatients. J Antimicrob Chemother. 2014; 69:3259-3262. DOI: 10.1093/jac/dku282

Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther. 2018; 16:289-306. DOI: 10.1080/14787210.2018.1453807

Bialvaei AZ, Samadi-Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015; 31:707-721. DOI: 10.1185/03007995.2015.1018989

Hamel M, Rolain JM, Baron SA. The history of colistin resistance mechanisms in bacteria: progress and challenges. Microorganisms. 2021; 9:442. DOI: 10.3390/microorganisms9020442

Andrade FF, Silva D, Rodrigues A, Pina-Vaz C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms. 2020; 8:1716. DOI: 10.3390/microorganisms8111716

Janssen AB, van Schaik W. Harder, better, faster, stronger: colistin resistance mechanisms in Escherichia coli. PLoS Genet. 2021; 17:e1009262. DOI: 10.1371/journal.pgen.1009262

Gogry FA, Siddiqui MT, Sultan I, Rizwanul Haq QM. Current update on intrinsic and acquired colistin resistances mechanisms in bacteria. Front Med. 2021; 8:677720. DOI: 10.3389/fmed.2021.677720

Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019; 12:956-975. DOI: 10.2147/IDR.S199844

Zong Z, Feng Y, McNally A. Carbapenem and colistin resistance in Enterobacter: determinants and clones. Trends Microbiol. 2021; 29:473-476. DOI: 10.1016/j.tim.2020.12.009

De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 2015; 11:e1004627. DOI: 10.1371/journal.ppat.1004627

Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pnemoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013; 57:4449-4462. DOI: 10.1128/AAC.02284-12

Falagas ME, Rafailidis PI, Matthaiou, DK. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Updat. 2010; 13:132-138. DOI: 10.1016/j.drup.2010.05.002

Band VI, Satola SW, Smith RD, Hufnagel DA, Bower C, Conley AB, et al. Colistin heteroresistance is largely undetected among carbapenem-resistant Enterobacterales in the United States. mBIO. 2021; 12:e02881-20. DOI: 10.1128/mBio.02881-20

Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrob Agents Chemother. 2015; 59:2780-2784. DOI: 10.1128/AAC.05055-14

Band VI, Crispell EK, Napier BA, Herrera CM, Tharp GK, Vavikolanu K, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol. 2016; 1:16053. DOI: 10.1038/nmicrobiol.2016.53

Band VI, Satola SW, Burd EM, Farley MM, Jacob JT, Weiss DS. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection. mBio. 2018; 9:e02448-17. DOI: 10.1128/mBio.02448-17

Hutter A, Verhaegh EM, Harbarth S, Muller AE, Theuretzbacher U, Mouton JW. Nitrofurantoin revisited: a systematic review and meta-analysis of controlled trials. J Antimicrob Chemother. 2015; 70:2456-2464. DOI: 10.1093/jac/dkv147

Shakti L, Veeraraghavan B. Advantage and limitations of nitrofurantoin in multi-drug resistant Indian scenario. Indian J Med Microbiol. 2015; 33:477-481. DOI: 10.4103/0255 0857.167350

Zhang X, Zhang Y, Wang F, Wang C, Chen L, Liu H, et al. Unraveling the mechanisms of nitrofurantoin resistance and epidemiological characteristics among Escherichia coli clinical isolates. Int J Antimicrob Agents. 2018;52:226-232. DOI: 10.1016/j.ijantimicag.2018.04.021

Sandegren S, Lindqvist A, Kahlmeter G, Andersson DI. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J Antimicrob Chemother. 2008; 62:495-503. DOI: 10.1093/jac/dkn222

Solórzano-Puerto A, López-Machado I, Albertuz-Crespo M, Martínez-González LJ, Gutiérrez-Fernández J. Characterization of fosfomycin and nitrofurantoin resistance mechanisms in Escherichia coli isolated in clinical urine samples. Antibiotics. 2020; 9:534. DOI: 10.3390/antibiotics9090534

Vervoort J, Xavier BB, Stewardson A, Coenen S, Godycki-Cwirko M, Adriaenssens N, et al. An in vitro deletion in ribE encoding lumazine synthase contributes to nitrofurantoin resistance in Escherichia coli. Antimicrob Agents Chemother. 2014; 58:7225-7233. DOI: 10.1128/AAC.03952-14

Sekyere JO. Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical Enterobacteriaceae. Future Sci OA. 2018; 4:FSO293. DOI: 10.4155/fsoa-2017-0156

Ho PL, Ng KY, Lo WU, Law PY, Lai LY, Wang Y, et al. Plasmid-mediated OqxAB is an important mechanism for nitrofurantoin resistance in Escherichia coli. Antimicrob Agents Chemother. 2015; 60:537-543. DOI: 10.1128/AAC.02156-15

Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med. 2017; 7:a025262. DOI: 10.1101/cshperspect.a025262

Tajik S, Shokri F, Rostamnezhad M, Khoshnood S, Mortazavi SM, Sholeh M, et al. Fosfomycin: a look at it various aspects. Gene Reports. 2020; 19:100640. DOI: 10.1016/j.genrep.2020.100640

Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ. Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int J Antimicrob Agents. 2019; 53:22-28. DOI: 10.1016/j.ijantimicag.2018.09.013

Castañeda-García A, Blásquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013; 2:217-236. DOI: 10.3390/antibiotics2020217

Kaye KS, Rice LB, Dane AL, Stuts V, Sagan O, Fedosiuk E, et al. Fosfomycin for injection (ZT1-01) versus piperacillin-tazobactam for the treatment of complicated urinary tract infection including acute pyelonephritis: ZEUS, a phase 2/3 randomized trial. Clin Infect Dis. 2019; 69:2045-2056. DOI: 10.1093/cid/ciz181

Zheng D, Bergen PJ, Landersdorfer CB, Hirsch EB. Differences in fosfomycin resistance mechanisms between Pseudomonas aeruginosa and Enterobacterales. Antimicrobial Agents and Chemotherapy. 2022; 66:e01446-21. DOI: 10.1128/AAC.01446-21

Couce A, Briales A, Rodríguez-Rojas A, Costas C, Pascual A, Blázquez J. Genomewide overexpression screen for fosfomycin resistance in Escherichia coli: MurA confers clinical resistance at low fitness cost. Antimicrob Agents Chemother. 2012; 56:2767-2769. DOI: 10.1128/AAC.06122-11

Horii T, Kimura T, Sato K, Shibayama K, Ohta M. Emergence of fosfomycin-resistant isolates of shiga-like toxin-producing Escherichia coli O26. Antimicrob Agents Chemother. 1999; 43:789-793. DOI: 10.1128/aac.43.4.789

Zurfluh K, Treier A, Schmitt K, Stephan R. Mobile fosfomycin resistance genes in Enterobacteriaceae – an increasing threat. Microbiologyopen. 2020; 9:e1135. DOI: 10.1002/mbo3.1135

Liu C, Qin S, Xu H, Xu L, Zhao D, Liu X, et al. New Delhi metallo--lactamase 1 (NDM-1), the dominant carbapenemase detected in carbapenem-resistant Enterobacter cloacae from Hernan province, China. PLoS ONE. 2015; 10:e0135044. DOI: 10.1371/journal.pone.0135044

Liu P, Chen S, Wu ZY, Qi M, Li XY, Liu CX. Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist. 2020; 22:238-243. DOI: 10.1016/j.jgar.2019.12.019

Publicado

2023-08-01

Cómo citar

González-Carballo, G. C., & García-Marín, C. (2023). Mecanismos de resistencia a la colistina, la nitrofurantoina y la fosfomicina en Enterobacterias. Acta Médica Costarricense, 65(2), 1–10. https://doi.org/10.51481/amc.v65i2.1272