Activación inmune por productos finales de glicación avanzada

Autores/as

DOI:

https://doi.org/10.51481/amc.v63i4.1212

Palabras clave:

diabetes, neurodegeneración, glicación avanzada, receptor para productos finales de glicación avanzada, COVID-19

Resumen

Con el objetivo de revisar los avances recientes en la biología de los productos de glicación avanzada y su papel en diversas patologías de alta relevancia en salud pública, se realizó una búsqueda dirigida de la bibliografía entre los años 2000 y 2021 en la base de datos PubMed (NCBI) y se usaron como palabras clave “advanced glycation end products”. Se ha demostrado que el receptor de productos de glicación avanzada induce una activación sostenida del factor de transcripción proinflamatorio NF-kB y suprime una serie de funciones autorreguladoras endógenas. Este efecto influye negativamente en una gran variedad de patologías como diabetes, autoinmunidad, neurodegeneración y enfermedades infecciosas. La acumulación tisular de productos de glicación avanzada está relacionada con procesos de inflamación crónica y disfunción celular, y constituye un blanco prometedor para el diseño de tratamientos enfocados en esta vía de señalización. Actualmente se realizan múltiples ensayos clínicos para determinar su utilidad como marcador de lesiones pulmonares en COVID-19.

Citas

Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018;28(3):337-352. doi: 10.1016/j.cmet.2018.08.014

Fritz G. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci. 2011;36(12):625-632.

Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep. 2011;11(4):244-252.

Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol. 2010;79(10):1379-1386. doi: 10.1016/j.bcp.2010.01.013

Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, et al. Dietary advanced glycation end products and their role in health and disease. Adv Nutr. 2015;6(4):461-473.

Henning C & Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33(4):499-512. doi: 10.1007/s10719-016-9694-y

Maessen DE, Stehouwer CD, Schalkwijk CG. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci. 2015;128(12):839-861. doi: 10.1042/CS20140683

Gaens KH, Goossens GH, Niessen PM, van Greevenbroek MM, van der Kallen CJ, Niessen HW, et al. Nε-(carboxymethyl)lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance. Arterioscler Thromb Vasc Biol. 2014; 34(6):1199-1208. doi: 10.1161/ATVBAHA.113.302281

Kierdorf K & Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leuk Biol. 2013;94(1):55-68. doi: 10.1189/jlb.1012519

Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for Advanced Glycation End Products and Its Involvement in Inflammatory Diseases. Int J Inflamm. 2013;2013:403460. doi: 10.1155/2013/403460

Sakaguchi M, Murata H, Yamamoto K, Ono T, Sakaguchi Y, Motoyama A, et al. TIRAP, an Adaptor Protein for TLR2/4, Transduces a Signal from RAGE Phosphorylated upon Ligand Binding. PLOS ONE. 2011;6(8):e23132. doi: 10.1371/journal.pone.0023132

Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25(11):2185-2197. doi: 10.1016/j.cellsig.2013.06.013

Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. RAGE and TLRs: Relatives, friends or neighbours? Mol Immunol. 2013;56(4):739-744. doi: 10.1016/j.molimm.2013.07.008

van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogen. 2008;11(1):91-99. doi: 10.1007/s10456-008-9093-5

Yamamoto Y, Yamamoto H. RAGE-Mediated Inflammation, Type 2 Diabetes, and Diabetic Vascular Complication. Front Endocrinol. 2013;4:105. doi: 10.3389/fendo.2013.00105

Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in Inflammation and Cancer. Annu Rev Immunol. 2010;28(1):367-388. doi: 10.1146/annurev.immunol.021908.132603

Yan SD, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer’s disease: a progression factor for amyloid-beta-induced cellular perturbation? J Alzheimers Dis. 2009;16(4):833-843. doi: 10.3233/JAD-2009-1030

Gąsiorowski K, Brokos B, Echeverria V, Barreto GE, Leszek J. RAGE-TLR Crosstalk Sustains Chronic Inflammation in Neurodegeneration. Mol Neurobiol. 2018;55(2):1463-1476. doi: 10.1007/s12035-017-0419-4

Ramasamy R, Yan SF, Schmidt AM. RAGE: therapeutic target and biomarker of the inflammatory response—the evidence mounts. J Leuk Biol. 2009;86(3):505-512. doi: 10.1189/jlb.0409230

Bertheloot D, Naumovski AL, Langhoff P, Horvath GL, Jin T, Xiao TS, et al. RAGE Enhances TLR Responses through Binding and Internalization of RNA. J Immunol. 2016;197(10):4118-4126. doi: 10.4049/jimmunol.1502169

Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2019;39(4):558-568. doi: 10.1161/ATVBAHA.119.310961

Senatus LM & Schmidt AM. The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front Genet. 2017;8:187. doi: 10.3389/fgene.2017.00187

Fischer S, Grantzow T, Pagel JI, Tschernatsch M, Sperandio M, Preissner KT, et al. Extracellular RNA promotes leukocyte recruitment in the vascular system by mobilising proinflammatory cytokines. Thromb Haemost. 2012;108(4):730-741. doi: 10.1160/TH12-03-0186

Cabrera-Fuentes H, Lopez ML, McCurdy S, Fischer S, Meiler S, Baumer Y, et al. Regulation of monocyte/macrophage polarisation by extracellular RNA. Thromb Haemost. 2015;113(3):473-481. doi: 10.1160/TH14-06-0507

Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol. 2015;89(Pt A):42-50. doi: 10.1016/j.yjmcc.2014.12.014

Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827-835. doi: 10.1038/nn.3113

Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3(4):365-373.

Jung HJ & Suh Y. Circulating miRNAs in Ageing and Ageing-Related Diseases. J Gen Genom. 2014;41(9):465-472. doi: 10.1016/j.jgg.2014.07.003

Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16(3):229-236. doi: 10.1038/ni.3102

Serpente M, Bonsi R, Scarpini E, Galimberti D. Innate Immune System and Inflammation in Alzheimer’s Disease: From Pathogenesis to Treatment. Neuroimmunomodul. 2014;21(2-3):79-87. doi: 10.1159/000356529

Angeloni C, Zambonin L, Hrelia S. Role of Methylglyoxal in Alzheimer’s Disease. BioMed Res Int. 2014;2014:238485. doi: 10.1155/2014/238485

Li X, Du L, Cheng X, Jiang X, Zhang Y, Lv B, et al. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 2013;4(6):e673. doi: 10.1038/cddis.2013.180

Supnet C & Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010;47(2):183-189. doi: 10.1016/j.ceca.2009.12.014

Dasu MR, Devaraj S, Park S, Jialal I. Increased Toll-Like Receptor (TLR) Activation and TLR Ligands in Recently Diagnosed Type 2 Diabetic Subjects. Diabetes Care. 2010;33(4):861-868. doi: 10.2337/dc09-1799

Daffu G, Del Pozo CH, O’Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical Roles for RAGE in the Pathogenesis of Oxidative Stress in Cardiovascular Diseases and Beyond. Int J Mol Sci. 2013;14(10):19891-19910. doi: 10.3390/ijms141019891

An X, Zhao Y, Yu J, Liu J, Gu W, Gao F. Plasma sRAGE is independently associated with high sensitivity C-reactive protein in type 2 diabetes without coronary artery disease. Diabetes Res Clin Pract. 2010;87(3):e19-22. doi: 10.1016/j.diabres.2009.12.005

Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, et al; NHLBI ARDS Network. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax. 2008;63(12):1083-1089. doi: 10.1136/thx.2008.095588

Nakamura T, Sato E, Fujiwara N, Kawagoe Y, Maeda S, Yamagishi S. Increased levels of soluble receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) are associated with death in patients with acute respiratory distress syndrome. Clin Biochem. 2011;44(8-9):601-604. doi: 10.1016/j.clinbiochem.2010.12.014

Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, et al. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front Cardiovasc Med. 2020;7:37. doi: 10.3389/fcvm.2020.00037

Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci. 2021;272:119251. doi: 10.1016/j.lfs.2021.119251

Yalcin Kehribar D, Cihangiroglu M, Sehmen E, Avci B, Capraz A, Yildirim Bilgin A, et al. The receptor for advanced glycation end product (RAGE) pathway in COVID-19. Biomarkers. 2021;26(2):114-118. doi: 10.1080/1354750X.2020.1861099

Wong LSY, Loo EXL, Kang AYH, Lau HX, Tambyah PA, Tham EH. Age-Related Differences in Immunological Responses to SARS-CoV-2. J Allergy Clin Immunol Pract. 2020;8(10):3251-3258. doi: 10.1016/j.jaip.2020.08.026

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3

Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leuk Biol. 2007;81(1):1-5. doi: 10.1189/jlb.0306164

Hallam KM, Li Q, Ananthakrishnan R, Kalea A, Zou YS, Vedantham S, et al. Aldose reductase and AGE-RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats. Aging Cell. 2010;9(5):776-784. doi: 10.1111/j.1474-9726.2010.00606.x

Valyaeva AA, Zharikova AA, Kasianov AS, Vassetzky YS, Sheval EV. Expression of SARS-CoV-2 entry factors in lung epithelial stem cells and its potential implications for COVID-19. Sci Rep. 2020;10(1):17772. doi: 10.1038/s41598-020-74598-5

Roy D, Ramasamy R, Schmidt AM. Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue. Arterioscler Thromb Vasc Biol. 2021;41(2):614-627. doi: 10.1161/ATVBAHA.120.315527

Song F, Hurtado del Pozo C, Rosario R, et al. RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice. Diabetes. 2014;63(6):1948-1965. doi: 10.2337/db13-1636

Lim A, Radujkovic A, Weigand MA, Merle U. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COVID-19 disease severity and indicator of the need for mechanical ventilation, ARDS and mortality. Ann Intensive Care. 2021;11(1):50. doi: 10.1186/s13613-021-00836-2

Blondonnet R, Audard J, Belville C, Clairefond G, Lutz J, Bouvier D, et al. RAGE inhibition reduces acute lung injury in mice. Sci Rep. 2017;7(1):7208. doi: 10.1038/s41598-017-07638-2.

Yerkovich ST, Chang AB, Carroll ML, Petsky HL, Scrivener G, Upham JW. Soluble receptor for advanced glycation end products (sRAGE) is present at high concentrations in the lungs of children and varies with age and the pattern of lung inflammation. Respirology. 2012; 17(5):841–846. doi: 10.1111/j.1440-1843.2012.02174.x

Kamo T, Tasaka S, Tokuda Y, Suzuki S, Asakura T, Yagi K, et al. Levels of Soluble Receptor for Advanced Glycation End Products in Bronchoalveolar Lavage Fluid in Patients with Various Inflammatory Lung Diseases. Clin Med Insights Circ Respir Pulm Med. 2016;9(Suppl 1):147-154. doi: 10.4137/CCRPM.S23326

Wu M, Chen Y, Xia H, Wang C, Tan CY, Cai X, et al. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc Natl Acad Sci. 2020;117(45):28336-28343. doi: 10.1073/pnas.2018030117

Chen L, Long X, Xu Q, Tan J, Wang G, Cao Y, et al. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell Mol Immunol. 2020;17(1):992-994. doi: 10.1038/s41423-020-0492-x

Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210-1220. doi: 10.1126/science.abc6261

Aceti A, Margarucci LM, Scaramucci E, Orsini M, Salerno G, Di Sante G, et al. Serum S100B protein as a marker of severity in Covid-19 patients. Sci Rep. 2020;10:18665. doi:10.1038/s41598-020-75618-0

Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Mediators Inflamm. 2020; 2020:7527953. doi: 10.1155/2020/7527953

Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, et al. Genome-wide crispr screens reveal host factors critical for SARS-CoV-2 infection. Cell. 2021;184(1):76-91. doi: 10.1016/j.cell.2020.10.028

Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020; 217:e20201129. doi: 10.1084/jem.20201129

Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021;128(9):1323-1326. doi: 10.1161/CIRCRESAHA.121.318902

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-1448. doi: 10.1126/science.abb2762

Liu CL, Shau WY, Chang CH, Wu CS, Lai MS. Pneumonia risk and use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. J Epidemiol. 2013;23(5):344–350. doi: 10.2188/jea.JE20120112

Van de Garde EM, Souverein PC, Hak E, Deneer VH, van den Bosch JM, Leufkens HG. Angiotensin-converting enzyme inhibitor use and protection against pneumonia in patients with diabetes. J Hypertens. 2007;25(1):235-239. doi: 10.1097/HJH.0b013e328010520a

Li XC & Zhuo JL. Nuclear factor-kappa B as a hormonal intracellular signaling molecule: focus on angiotensin II-induced cardiovascular and renal injury. Curr Opin Nephrol Hypertens. 2008;17(1):37–43. doi: 10.1097/MNH.0b013e3282f2903c

Caldeira D, Alarcão J, Vaz-Carneiro A, Costa J. Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. Brit Med J. 2012;345:e4260. doi: 10.1136/bmj.e4260

Rojas A, Gonzalez I, Morales MA. SARS-CoV-2-mediated inflammatory response in lungs: should we look at RAGE?. Inflamm Res. 2020;69(7):641-643. doi: 10.1007/s00011-020-01353-x

Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J, et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res. 2020;126(12):1671-1681.

Oczypok EA, Perkins TN, Oury TD. All the “RAGE” in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev. 2017;23(1):40-49. doi: 10.1016/j.prrv.2017.03.012

Tavares CAM, Avelino-Silva TJ, Benard G, Cardozo FAM, Fernandes JR, et al. ACE2 Expression and Risk Factors for COVID-19 Severity in Patients with Advanced Age. Arq Bras Cardiol. 2020;115(4):701-707. doi: 10.36660/abc.20200487

Pinheiro TA, Barcala-Jorge AS, Andrade JMO, Pinheiro TA, Ferreira ECN, Crespo TS, et al. Obesity and malnutrition similarly alter the renin–angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017;48(1):74-82. doi: 10.1016/j.jnutbio.2017.06.008

Frantz EDC, Giori IG, Machado MV, Magliano DC, Freitas FM, Andrade MSB, et al. High, but not low, exercise volume shifts the balance of renin-angiotensin system toward ACE2/Mas receptor axis in skeletal muscle in obese rats. Am J Physiol Endocrinol Metab. 2017;313(4):E473–E482. doi: 10.1152/ajpendo.00078.2017

Sattar N, McInnes IB, McMurray JJV. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation. 2020;142(1):4-6. doi: 10.1161/CIRCULATIONAHA.120.047659

Iannelli A, Favre G, Frey S, Esnault V, Gugenheim J, Bouam S, et al. Obesity and COVID-19: ACE 2, the Missing Tile. Obes Surg. 2020;30(11):4615-4617. doi: 10.1007/s11695-020-04734-7

Publicado

2022-04-28

Cómo citar

Centeno-Ureña, Y., & Ulloa-Morales, A. (2022). Activación inmune por productos finales de glicación avanzada. Acta Médica Costarricense , 63(4), 199-209. https://doi.org/10.51481/amc.v63i4.1212

Artículos similares

También puede {advancedSearchLink} para este artículo.