Resistencia a desinfectantes y su relación con la resistencia a los antibióticos

Autores/as

  • Luz Chacón-Jiménez Instituto de Investigaciones en Salud
  • Keilor Rojas-Jiménez Universidad de Costa Rica

DOI:

https://doi.org/10.51481/amc.v62i1.1054

Palabras clave:

bacterias, desinfectantes, resistencia, antibióticos

Resumen

Objetivo: sistematizar los principales mecanismos de acción de los desinfectantes y describir mecanismos de resistencia comunes entre biocidas y antibióticos.

Métodos: se realizó una revisión bibliográfica de artículos científicos entre 2000 y julio de 2019, sobre la relación entre la resistencia a biocidas y a los antibióticos, utilizando como palabras clave “antibiotic”, “biocide”, “resistance” y “bacteria”, en las bases de datos PubMed y Google Scholar.

Conclusiones: existe numerosa evidencia científica que indica la relación entre bacterias resistentes a los desinfectantes y la adquisición de resistencia a los antibióticos, lo que implica un replanteamiento del uso de esas sustancias en diferentes contextos clínicos, con el fin de minimizar el impacto que puedan tener en la selección de microorganismos multirresistentes a los antibióticos.

Descriptores: bacterias, desinfectantes, resistencia, antibióticos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

World Health Organization (WHO). Antimicrobial resistance: Global Report on Surveillance. Bull World Health Organ 2014; 61: 383–94.

Bore E, Hébraud M, Chafsey I, Chambon C, Skjæret C, Moen B, et al. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology 2007; 153: 935–46.

Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ, Piddock LJV. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother 2015; 70: 2241–8.

Gilbert P, McBain AJ. Potencial impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 2003; 16: 189–208.

Cerf O, Carpentier B, Sanders P. Tests for determining in-use concentrations of antibiotics and disinfectants are based on entirely different concepts: “Resistance” has different meanings. Int J Food Microbiol 2010; 136: 247–54.

McDonnell G, Russell AD. Antiseptics and disinfectants: Activity, action, and resistance. Clin Microbiol Rev 1999; 12: 147.

Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Assessment of the Antibiotic Resistance Effects of Biocides. Eur. Comm. Consum. Prot. DG. 2009; : 1–118.

Wessels S, Ingmer H. Modes of action of three disinfectant active substances: A review. Regul Toxicol Pharmacol 2013; 67: 456–67.

Gilbert P, Moore LE. Cationic antiseptics: Diversity of action under a common epithet. J Appl Microbiol 2005; 99: 703–15.

Schweizer HP. Triclosan: a widely used biocide and its link. FEMS Microbiol Lett 2001; 202: 1–7.

Maillard JY. Bacterial target sites for biocide action. Symp Ser Soc Appl Microbiol 2002; : 16S-27S.

Chaplin CE. Bacterial Resistance To Quaternary Ammonium. J Bacteriol 1952; 63: 453–8.

Bravo Z, Orruño M, Navascues T, Ogayar E, Ramos-Vivas J, Kaberdin VR, et al. Analysis of Acinetobacter baumannii survival in liquid media and on solid matrices as well as effect of disinfectants. J Hosp Infect 2019. DOI:10.1016/j.jhin.2019.04.009.

Guo J, Li C. Molecular epidemiology and decreased susceptibility to disinfectants in carbapenem-resistant Acinetobacter baumannii isolated from intensive care unit patients in central China. J Infect Public Health 2019; : 1–7.

Uttlová P, Urban J, Melicherciková V, Zavadilová J, Fabiánová K. Susceptibility of clinical isolates of Bordetella pertussis to chemicals. Epidemiol Mikrobiol Imunol 2018; 67: 122–8.

Song JE, Kwak YG, Um TH, Cho CR, Kim S, Park IS, et al. Outbreak of Burkholderia cepacia pseudobacteraemia caused by intrinsically contaminated commercial 0.5% chlorhexidine solution in neonatal intensive care units. J Hosp Infect 2018; 98: 295–9.

Alotaibi SMI, Ayibiekea A, Pedersen AF, Jakobsen L, Pinholt M, Gumpert H, et al. Susceptibility of vancomycin-resistant and –sensitive Enterococcus faecium obtained from Danish hospitals to benzalkonium chloride, chlorhexidine and hydrogen eroxide biocides. J Med Microbiol 2017; 66: 1744–51.

Shafaati M, Boroumand M, Nowroozi J, Amiri P, Kazemian H. Correlation Between qacE and qacEΔ1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of E.coli. Recent Pat Antiinfect Drug Discov 2017; 11: 189.

Bock LJ, Wand ME, Sutton JM. Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 2016; 93: 42–8.

Vali L, Dashti AA, El-Shazly S, Jadaon MM. Klebsiella oxytoca with reduced sensitivity to chlorhexidine isolated from a diabetic foot ulcer. Int J Infect Dis 2015; 34: 112–6.

Cortesia C, Lopez GJ, de Waard JH, Takiff HE. The use of quaternary ammonium disinfectants selects for persisters at high frequency from some species of non-tuberculous mycobacteria and may be associated with outbreaks of soft tissue infections. J Antimicrob Chemother 2010; 65: 2574–81.

Shinoda N, Mitarai S, Suzuki E, Watanabe M. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan. Antimicrob Resist Infect Control 2016; 5: 5–8.

Moore JE, Rendall JC. Comparison of susceptibility of cystic-fibrosis-related and non-cystic-fibrosis-related Pseudomonas aeruginosa to chlorine-based disinfecting solutions: Implications for infection prevention and ward disinfection. J Med Microbiol 2014; 63: 1214–9.

Tschudin-Sutter S, Frei R, Kampf G, Tamm M, Pflimlin E, Battegay M, et al. Emergence of Glutaraldehyde-Resistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 2011; 32: 1173–8.

Romão C, Miranda CA, Silva J, Mandetta Clementino M, De Filippis I, Asensi M. Presence of qacEΔ1 gene and susceptibility to a hospital biocide in clinical isolates of Pseudomonas aeruginosa resistant to antibiotics. Curr Microbiol 2011; 63: 16–21.

Do Vale BCM, Nogueira AG, Cidral TA, Lopes MCS, De Melo MCN. Decreased susceptibility to chlorhexidine and distribution of qacA/B genes among coagulase-negative Staphylococcus clinical samples. BMC Infect Dis 2019; 19: 1–5.

Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, et al. Increased Usage of Antiseptics Is Associated with Reduced Susceptibility in Clinical Isolates of Staphylococcus aureus. MBio 2018; 9: e00894-18.

Hughes C, Ferguson J. Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology 2017; 49: 633–7.

Campos GB, Souza SG, Lobão TN, Da Silva DCC, Sousa DS, Oliveira PS, et al. Isolation, molecular characteristics and disinfection of Methicillin-resistant Staphylococcus aureus from ICU units in Brazil. New Microbiol 2012; 35: 183–90.

McMurry LM, Aronson DA, Levy SB. Susceptible Escherichia coli cells can actively excrete tetracyclines. Antimicrob Agents Chemother 1983; 24: 544–51.

Li XZ, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 1994; 38: 1732–41.

Lubelski J, Konings WN, Driessen AJM. Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria. Microbiol Mol Biol Rev 2007; 71: 463–76.

Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1: 107–25.

Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochim Biophys Acta 2008; 1778: 1814–38.

Law CJ, Maloney PC, Wang D. Ins and Outs of major facilitador Superfamily Antiporters. Annu Rev Microbiol 2009; 62: 289–305.

Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 2009; 1794: 763–8.

Blanco P, Hernando-Amado S, Reales-Calderon J, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms 2016; 4: 14.

Chitsaz M, Brown MH. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017; 61: 127–39.

Li X-Z, Nikaido H. Efflux-Mediated Drug Resistance in Bacteria: an Update. Drugs 2009; 69:1555-1623.

Bay DC, Turner RJ. Diversity and evolution of the small multidrug resistance protein family. BMC Evol Biol 2009; 9. DOI:10.1186/1471-2148-9-140.

Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elem 2012; 2: 211–23.

Naas T, Mikami Y, Imai T, Poirel L, Nordmann P. Characterization of In53, a Class 1 Plasmid- and Composite Transposon-Located Integron of Escherichia coli Which Carries an Unusual Array of Gene Cassettes. J Bacteriol 2001; 183: 235–49.

Brown HJ, Stokes HW, Hall RM. The integrons In0, In2, and In5 are defective transposon derivatives. J Bacteriol 1996; 178: 4429–37.

Gaze WH, Abdouslam N, Hawkey PM, Wellington EMH. Incidence of Class 1 Integrons in a Quaternary Ammonium Compound-Polluted Environment. Antimicrob Agents Chemother 2005; 49: 1802–7.

Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 2015; 16: 1–14.

Karkman A, Do TT, Walsh F, Virta MPJ. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol 2018; 26: 220–8.

Barrantes K, Chacón L, Solano M, Achí R. Class 1 integrase and genetic cassettes blaoxa and blatem among multi-drug resistant Shigella isolates in Costa Rica. Int J Biol Sci Appl 2014; 1: 24–7.

Soto-Rodríguez S. Caracterización de aislamientos de Escherichia coli de dos plantas de tratamiento de aguas residuales del Gran Área Metropolitana, Costa Rica. 2017.

Universidad de Costa Rica. Benzalkonium chloride effect over activated sludge – BioProject. [Internet]. [subido 28 Jun 2019; citado 7 Oct 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA551675/

Universidad de Costa Rica. Escherichia coli strain PTA_A655-5. [subido 2 Oct 2019; citado 7 Oct 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/bioproject/?term=SUB6336663+PRJNA573715+SAMN12822722+WAAH00000000+Escherichia+coli+PTA_A655-5

Universidad de Costa Rica. Escherichia coli strain PTA_A1156-1. [subido 2 Oct 2019; citado 7 Oct 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/bioproject/?term=SUB6336832+PRJNA573731+SAMN12822948+WAAI00000000+Escherichia+coli+PTA_A1156-1

Universidad de Costa Rica. Escherichia coli strain PTA_A1167-1. [subido 2 Oct 2019; citado 7 Oct 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/bioproject/?term=SUB6336837+PRJNA573733+SAMN12823250+WAAJ00000000+Escherichia+coli+PTA_A1167-1

Descargas

Publicado

2020-02-24 — Actualizado el 2020-09-09

Versiones

Cómo citar

Chacón-Jiménez, L., & Rojas-Jiménez, K. (2020). Resistencia a desinfectantes y su relación con la resistencia a los antibióticos. Acta Médica Costarricense, 62(1), 7–12. https://doi.org/10.51481/amc.v62i1.1054 (Original work published 24 de febrero de 2020)

Artículos similares

También puede {advancedSearchLink} para este artículo.